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ABSTRACT 
 In the present work a multi-layer perceptron 
neural network is used to obtain initial estimates 
to solve inverse heat transfer problems using a 
gradient based method (Levenberg-Marquardt). 
 
INTRODUCTION 

 In recent years it has been observed an 
increasing interest in the analysis and solution of 
inverse heat transfer problems. Implicit 
formulations of inverse problems of parameter 
estimation, in which a cost function is minimized, 
have largely been employed for the solution of 
such problems [1-5]. In most cases gradient based 
methods have been used for the minimization of 
the cost function, but when convergence occurs it 
may in fact lead to a local minimum. On the other 
hand, the main advantage of such methods is a 
good rate of convergence. 

 Another approach for the minimization of 
the cost function involves global optimization 
methods, with an increasing interest towards 
stochastic methods. With the proper 
implementation of these methods one gets very 
close to the global minimum, but the 
computational cost is usually very high. 

 In previous works [6-8] combinations of 
gradient based methods and stochastic 
optimization methods were used. In that 
approach, stochastic methods were employed to 
obtain good estimates to gradient methods, trying 

to get the best of each approach, i.e., the 
computational efficiency of gradient methods and 
the assurance of getting a good approximation to 
the global minimum by the careful 
implementation of the stochastic optimization 
methods. 
 In the present work a faster alternative was 
tried to obtain a better first guess to the 
Levenberg-Marquardt (LM) method. A simple 
multi-layer perceptron (MLP) artificial neural 
network (ANN) with back-propagation algorithm 
was used for this purpose. A reduced number of 
neurons in the network and a reduced number of 
patterns for training were used to get with low 
computational cost the initial estimates for the 
LM method. Differently from previous works 
dealing with ANNs for the inverse solution in 
heat conduction problems for function estimation 
[9-11], the goal here is to focus on the parameter 
estimation problem. A literature review has 
shown that there is a large number of publications 
in damage/defects identification using ANNs. 
Nonetheless, there is still a lot to be done on 
inverse heat transfer problems. 

Bokar [12] used an ANN fot the estimation 
of parameters in a inverse radiative transfer 
problem, and Boillereaux et al. [13] estimated 
thermal properties of food samples using an 
ANN. 
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HEAT CONDUCTION PROBLEM 
 Consider a cylindrical sample of radius R, 

with a line source at r = 0, and long enough such 
that heat conduction can be considered only in the 
radial direction. The sample is initially at the 
same temperature of the ambient, T = Tamb, and 
the heat source, whose intensity may vary with 
time, g (t), starts to release its energy at t = 0. 

The mathematical formulation of the 
physical situation described is given by 
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where h is the heat transfer coefficient, ρ  the 

density, k  the thermal conductivity, and pc  the 

heat capacity. 
Measured data on the temperature at a given 

location of the sample at different times { }iW  is 

considered available. 
 
RADIATIVE TRANSFER PROBLEM 

 Consider the problem of radiative transfer in 
an absorbing, isotropically scattering, plane-
parallel, and gray medium of optical thickness 

0τ , between two diffusely reflecting boundary 
surfaces. The mathematical formulation of the 
direct problem with azymuthal symmetry is given 
by 
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where ),( µτI  is the dimensionless radiation 
intensity, τ  the optical variable, µ  the direction 

cosine, ω  the single scattering albedo, and 1ρ  

and 2ρ  the diffuse reflectivities. The illumination 
from the outside is supplied by isotropically 
incident radiation given by the terms 1A  and 2A . 
Measured exit intensities {Yi}, at different polar 
angles, are considered available.  
 
SOLUTION OF THE INVERSE PROBLEM 
WITH THE LEVENBERG-MARQUARDT 
METHOD 

 In the heat conduction problem we are 
interested in the estimation of k  and pc , 

represented by the vector of unknowns 
 

{ }T
pckZ ,=

�
                                                       (3) 

 
using experimental data on the temperature 
acquired inside the medium, ,N,,iW i �2 1 , = . 

As the number of measured data, N , is 
usually much larger than the number of 
parameters to be estimated, M = 2, the problem 
is solved as a finite dimensional optimization 
problem in which we seek to minimize 
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with the elements of vector F

�
 given by 

 
( ) ,N,,iWckTF ipii �21           ,, =−=         (5) 

 
where Ti are the calculated temperatures. The 
index i represents the discretization of the time 
interval in which the temperature measurements 
are taken. 
 The inverse radiative transfer problem we 
are interested in can be stated as: by utilizing the 
measured data {Yi}, i = 1, 2,..., N, determine the 
elements of the unknown vector Z

�
, with 2=M , 

defined as 
 

{ }TZ 0,τω=
�

                                                    (6) 
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 A squared residues norm, similar to Eq. (4) 
is also minimized, with the elements of the 
residue vector given by 
 

NiYIF iii ,,2 ,1      ,),,,( 210 �=−= ρρωτ       (7) 
 
where Ii are the computed exit intensities. 
 The minimization of the cost function Q 
with the Levenberg-Marquardt method consists 
on constructing an iterative procedure that starts 
with an initial guess 0Z

�
, and new estimates are 

obtained with 
 

nnn ZZZ
���

∆+=+1     ,   � 2, 1 ,0 =n                   (8) 
 

being the variation nZ
�

∆ calculated from 
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where λ  is the damping parameter, Γ  the 
identity matrix, and the elements of the Jacobian 
matrix J for the heat conduction problem are 
 

j

i
ij Z

T
J

∂
∂

= ,  i = 1, 2,..., N  and  j = 1, 2,..., M  (10a) 

 
and for the radiative transfer problem are 
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The iterative procedure of sequentially 

calculating nZ
�

∆ and 1+nZ
�

 from Eqs. (8) and (9), 
is continued until the convergence criterion 
 

ε<∆ n
jZ ,       for  j = 1, 2,..., M                      (11) 

 
is satisfied, where ε is a small number, say 10-5. 

The damping factor λn is varied during the 
iterative procedure, such that when convergence 
is achieved its value is close to zero. Here we 
follow the approach proposed by Marquardt [14]. 
 
THE MULTI-LAYER PERCEPTRON 
NEURAL NETWORK 
  The multi-layer perceptron (MLP) [12] is a 
collection of connected processing elements 
called nodes or neurons, arranged in layers (Fig. 

1). Signals pass into the input layer nodes, 
progress forward through the network hidden 
layers and finally emerge from the output layer. 
Each node i is connected to each node j in its 
preceding layer through a connection of weight 
wij, and similarly to nodes in the following layer. 
A weighted sum is performed at i of all the 
signals xj from the preceding layer, yielding the 
excitation of the node; this is then passed through 
a nonlinear activation function, f , to emerge as 
the output of the node xi to the next layer, as 
shown in the equation 
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j
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Various choices for the function f are 

possible. In this work the hyperbolic tangent 
function f(x) = tanh (x) is used. 
 

 
Figure 1 – Multi-layer perceptron network. 

 
 

 The first stage of using an ANN to model an 
input-output system is to establish the appropriate 
values for the connection weights wij. This is the 
“training” or learning phase. Training is 
accomplished using a set of network inputs for 
which the desired outputs are known. These are 
the so called patterns, which are used in the 
training stage of the ANN. At each training step, a 
set of inputs are passed forward through the 
network yielding trial outputs which are then 
compared to the desired outputs. If the 
comparison error is considered small enough, the 
weights are not adjusted. Otherwise the error is 
passed backwards through the net and a training 
algorithm uses the error to adjust the connection 
weights. This is the back-propagation algorithm 
used in the present work. 
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 Once the comparison error is reduced to an 
acceptable level over the whole training set, the 
training phase ends and the network is 
established. The parameters of a model (output) 
can be, then, determined using the real 
experimental data, which are inputs of the 
established neural network.  This is the 
generalization stage in the use of the ANN. 
 
RESULTS AND DISCUSSION 
 
Inverse heat conduction problem 
 
  For the thermal characterization of a new 
polymeric material with 25% in mass of lignin, 
which is obtained from sugar cane bagasse, we 
have used real transient temperature measured 
data acquired with a hot wire experimental 
apparatus [16]. Using the Levenberg-Marquardt 
(LM) method the following results were obtained: 

KmW00006.007319.0 ±=k and cp=1563 ± 3  

KkgJ . 
  In Case (1) of Table 1 are presented the 
estimates obtained at each iteration of the LM 
method starting with the initial guess 

( ) ( )1000,05.0, 000 == pckZ
�

. The value of the 

cost function, or objective function, Q, at each 
iteration is also presented. In Case (2), Table 2, 
LM starts from a different initial guess 

( ) ( )3500,05.0, 000 == pckZ
�

 and doesn't 

converge. The solution is probably a local 
minimum. 

 

Table 1. Case 1 - 0Z
�

= (0.05, 1000) – LM 
 

Iteration 
k 

(W/m K) 
cp 

(J/kg K) 
Q 

(K2) 

0 0.05 1000.0 4285.75 

1 0.06584 1361.6 262.53 

2 0.07245 1537.7 2.6314 

3 0.07319 1563.0 0.1179 

4 0.07319 1563.0 0.1179 

 
 

Table 3 shows the solution using a stochastic 
method alone (Simulated Annealing - SA). It 
converged after 35 cycles, which requires more 

than 7000 function evaluations. Table 4 
represents a combination of LM with SA. After 
running SA for only five cycles we obtain the 
initial guess for the LM method. The combination 
worked well, with less computational cost than 
the one required to obtain the solution shown in 
Table 3. 
 

Table 2. Case 2 - 0Z
�

= (0.005, 3500) – LM 
 

 
 

Table 3. Case 2 - 0Z
�

= (0.005, 3500) – SA 
 

Cycle k(W/mK) cp (J/kg K) Q (K2) 

0 0.0050 3500.0 42124.58 

1 0.0509 3492.1 6.415 

2 0.0539 3160.3 4.441 

3 0.0576 2752.3 2.625 

5 0.0708 1705.6 0.164 

35 0.0732 1563.3 0.118 
 
 

Table 4. Case 2 - 0Z
�

= (0.005, 3500) – LM after 
five cycles of SA (Combination SA-LM) 

 

 
 

In Table 5, the results using ANNs to obtain 
initial estimates for the LM method are presented. 
A decreasing number of patterns was used to train 
the network. Even with a small number of 
patterns the results obtained from the ANN are 
good enough to be used as initial estimates for the 
LM method. The patterns were generated using a 
finite difference approximation for problem (1). 

Iteration k(W/m K) cp(J/kg K) Q (K2) 

0 0.0050 3500.00 42124.58 

1 0.0106 5602.83 5461.03 

2 0.0224 6838.62 264.75 

3 0.0418 4629.64 17.53 

4 0.0418 4629.64 17.53 

Iteration k(W/m K) cp (J/kg K) Q (K2) 

0 0.0708 1705.6 0.164 

1 0.0731 1561.7 0.132 

2 0.0732 1563.0 0.118 
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The computational cost of the combination ANN-
LM is lower than the one for the combination SA-
LM. 
  The experimental data used for the solution 
of the inverse problem consisted of a set of 26 
real temperature measurements taken at different 
times. Therefore, the input layer of the ANN 
consisted of 26=N  entries, and for the hidden 
layer of the ANN we started with N2  neurons, 
i.e. 52. After that we considered N  neurons, i.e. 
26. In this work only one hidden layer was used. 
As shown in Table 5, in all cases   attempted the 
ANN generated, at a low cost, good initial 
guesses to be used in the LM method. Therefore, 
the combination ANN-LM is very promising. 
 

Table 5. Case 2 – Using Neural Networks to 
obtain initial estimates for LM  

(Combination ANN-LM) 

Remark: With the above initial estimates (ANN), 
LM converged to the expected values, 

0732.0=k W/m K and 1563=pc  J/kg K with 

less than five iterations in all cases.
 
 
Inverse radiative transfer problem 
 

As real experimental data was not available 
we have considered synthetic experimental data 
for the solution of the inverse radiative transfer 
problem. In this case we make 

 
( ) σrZIY exactcalci  576.2+=
�

                     (13) 
 

where calcI  is obtained from the solution of 

problem (2) using the exact values for the 

unknowns, exactZ
�

, r is a random number in the 

range [-1, 1], and σ represents the standard 
deviation of the measurement errors. 

In Table 6 we present the results obtained 
using ANNs for the estimation of the single 
scattering albedo and optical thickness for the 
particular case with ω = 0.64 and τo = 2.25. 

The results shown in Table 6 were obtained 
using simulated noiseless data, i.e. σ = 0 in Eq. 
(13). 

The patterns used in the training stage of the 
ANNs were generated using a discrete ordinates 
method for the solution of problem (2). 

A few test cases were also run considering 
noisy data. The results are shown in Table 7. 

As expected some degradation on the 
estimation is observed when noisy data is used, 
but these estimates are still good enough to be 
used as initial guesses for the Levenberg-
Marquardt method. 
 

Table 6. Inverse radiative transfer problem – 
Using Neural Networks to obtain  

initial estimates for LM  
(Combination ANN-LM) 

Remark: With the above initial estimates (ANN), 
LM converged to the expected values, 64.0=ω  
and 25.20 =τ , with less than ten iterations in all 

cases.
 
 
Table 7. Results for the inverse radiative transfer 

problem using ANNs and noisy data. 

 
 

Silva Neto and Soeiro [6,7] solved inverse 
radiative transfer problems using stochastic 
methods (SA - Simulated Annealing and GA - 
Genetic Algorithms), and combinations of these 
stochastic methods with the Levenberg-Marquardt 
method, i.e. SA-LM and GA-LM, but in all cases 
the computational cost was higher than the one 
required for the combination ANN-LM. 
 

Number of        
patterns Nhidden k(W/m K) cp(J/kg K) 

50 52 0.0703 1740.44 

25 52 0.0715 1937.90 

10 26 0.0690 2177.29 

5 26 0.0698 2016.63 

Number of        
patterns Nhidden ω  0τ  

50 40 0.5999 3.056 

25 40 0.6237 2.427 

10 20 0.6374 2.670 

5 20 0.5752 2.457 

Error  
2 % 5 % 

Number 
of 

patterns ω  
0τ  ω  

0τ  

5 0.6437 2.819 0.6413 2.858 
10 0.6543 2.643 0.6371 2.858 
25 0.6308 3.121 0.6566 3.020 
50 0.6279 2.8894 0.6374 3.176 
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CONCLUSIONS 
  In the present work neural networks were 
used to obtain initial estimates for the LM 
method. This approach worked well for the 
proposed problems, showing promising results 
when the design space is complex with several 
local minima. The computational cost was also 
decreased when compared with the combination 
of a stochastic global optimization method, such 
as SA and a gradient based method, such as LM. 
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